Roadmap for the next 25 minutes

• CASMO5 lattice physics code development
 – New libraries, e.g. ENDF/B-VII.1 and JENDL-4.0
 – New numerical models, e.g. linear source model

• Motivation for development new data libraries

• General comments on the E7R1 and JENDL-4.0 evaluations and libraries

• Results for the C5G7 MOX benchmark and some other MxN problems

• Results for some critical experiments with new libraries and linear source
 – B&W 1810 Series
CASMO5 – Pieces and Parts of a Lattice Physics Code (circa 2010):

- Library: ENDF/B-VII.0 586 group nuclear data library

- Resonance Calculation: Equivalence Theory based with characteristics based Dancoff calculation

- 2D Transport Solution: Method of Characteristics (flat source)

- Depletion solver: Linear chains with Predictor/Corrector depletion (with special quadratic Gd depletion)
CASMO5 – Pieces and Parts of a Lattice Physics Code (circa 2012)
-A lot has changed:

• Library: ENDF/B-VII.1 586 group nuclear data library

• Resonance Calculation: Equivalence Theory based with characteristics based Dancoff calculation (the same)

• 2D Transport Solution: Method of Characteristics (linear source)

• Depletion Solver: 4th order Runge-Kutta-Fehlberg (RKF) (under very near term development)
New Nuclear Data → New Opportunities!

Truly state-of-the-art nuclear data:

- JENDL-4.0 (Released May 2010)
- ENDF/B-VII.1 (Released Dec. 22, 2011)

New data on the libraries allows the implementation of new models not possible with the old data libraries.
Quick CASMO Library Comparison

<table>
<thead>
<tr>
<th></th>
<th>CASMO4 L-Library</th>
<th>CASMO5 E7R0 (old)</th>
<th>CASMO5 E7R1/J4/J311 (new)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation</td>
<td>E4</td>
<td>E7R0</td>
<td>E7R1/J4.0/J311</td>
</tr>
<tr>
<td># Neutron Grps</td>
<td>70</td>
<td>586</td>
<td>586</td>
</tr>
<tr>
<td># Thermal Grps</td>
<td>43 (<0.4 eV)</td>
<td>42 (< 0.625 eV)</td>
<td>42 (< 0.625 eV)</td>
</tr>
<tr>
<td># Gamma Grps</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>#IDs (nuclide/materials)</td>
<td>103</td>
<td>454</td>
<td>568 [+114]</td>
</tr>
<tr>
<td># Actinides</td>
<td>19</td>
<td>51</td>
<td>60</td>
</tr>
<tr>
<td># Fission Products</td>
<td>29 + 2 Lumps</td>
<td>234</td>
<td>259 [+25]</td>
</tr>
<tr>
<td># Resonance isotopes</td>
<td>21</td>
<td>136</td>
<td>232 [+96]</td>
</tr>
<tr>
<td># with Pn-data</td>
<td>---</td>
<td>66</td>
<td>106 [+40]</td>
</tr>
<tr>
<td># Nuclides with N,2N etc.</td>
<td>N,2N (4)</td>
<td>N,2N (178)</td>
<td>N,2N (396), N,3N (347) N,4N (32)</td>
</tr>
</tbody>
</table>
Explicit Shielding of Low Energy Resonances

Pu239, Pu240, U235, U238
6.67, 20.87, 36.7 eV

Fine groups
Shielded

Cross Section (b)

Incident Energy (eV)
Components of a CASMO5 Library

- Multigroup microscopic cross section data for: σ_a, σ_f, $\nu\sigma_f$, and σ_{tr} and P_0 scattering matrices (incl. $S(\alpha,B)$ data)
- Resonance data (shielding data tabulated at 18 background cross sections and up to 10 temperatures spanning 293K to 2700K)
- Resonance upscatter data and Goldstein-Lambda values
- Prompt and delayed neutron fission spectra
- Delayed neutron data (β’s, λ’s and delayed neutron emission spectra)
- Pn-scattering data (up to order 5 for nuclides where anisotropic scattering is important)
- $(n,2n)$, $(n,3n)$ and $(n,4n)$ data
- Fission yield and radioactive decay data and energy release per fission data
General comments JENDL-4.0 library:

All new minor actinide data

No new fission yields or decay sub-library for J4.0
(*CASMO* J4.0 library uses E7R1 fission yield/decay data)

Gd-157 data different from E7R1 or (taken from recent RPI measurements)

Includes data for Osmium and Ytterbium
General comments E7R1 library:

E7R1 contains new evaluations for:

\[^{27}\text{Al}, ^{52}\text{Cr}, ^{53}\text{Cr}, ^{55}\text{Mn}, ^{58}\text{Ni}, ^{60}\text{Ni}, ^{78}\text{Kr}, ^{90}\text{Zr}, ^{123}\text{Xe}, ^{124}\text{Xe}, ^{180}\text{W}, ^{182}\text{W}, ^{183}\text{W}, ^{184}\text{W}, ^{186}\text{W}, ^{185}\text{Re}, ^{237}\text{U}, ^{239}\text{U}, ^{240}\text{Pu}, ^{240}\text{Am}, ^{174}\text{Hf}, ^{176}\text{Hf}, ^{177}\text{Hf}, ^{178}\text{Hf}, ^{179}\text{Hf}, \text{and} ^{180}\text{Hf} \]

All new minor actinide data in the evaluation from JENDL 4.0

New fission yields and decay sub-library

Delayed neutron data rolled back to E6R8 release

Final release included some Tm data, no Os data

Both libraries now allow direct calculation with enriched boron
Upgraded Thorium chains

May 2-3, 2012
International Users Group Meeting

Studsvik
Extension of the Berklium chain

(By default **CASMO5** generates all the isotopics for the **SNF** (Spent Nuclear Fuel) code)
CASMO-4 L-Library

Very simple heavy metal chains – all the essentials but too simplified to work with the SNF code

May 2-3, 2012 International Users Group Meeting
Also enhanced Gd residual...

Addition of the Dy/Ho fission product chain

CASMO5 - no lumped fission product!
Tungsten/Rhenium and Osmium Data

• The new libraries now have tungsten, rhenium, and osmium data as burnable absorbers:

Motivation: for depletion of AP1000 control rods (where buildup of Re-187 is important)

• Now modeled in SIMULATE5
Ytterbium and Thulium data allows for extension of the Erbium depletion chain

and Hf-175 been added to the Hf chain:
New 2D transport Solver: Motivation

• Current transport solver based on Flat Source (FS) Method of Characteristics

• Certain problems require very fine flat source mesh to achieve desired accuracy
 – C5G7 MOX benchmark reflector region

• Mesh refinement → Increase number of tracks
 – Run time and storage can greatly increase
• For some regions it is not so easy to refine the flat source mesh, so instead of spatial refinement, improve spatial source ‘shape’
 – Assume source is linear function of space

• Goal: By using a higher order method we can eliminate the need for excessive flat source mesh in the problem

⇒ CASMO5 Linear Source Model ~3 years in development
C5G7 MOX Benchmark

• C5G7 MOX benchmark previously solved with Flat Source MoC in CASMO5 (2008 ANS Winter Meeting)
 – Good accuracy (~ 5-10 pcm error, < 0.04 max. pin power error)
 – Good performance (~8 min. run time)
 – Very fine flat source spatial discretization required
C5G7 MOX Benchmark

- Four 17x17 UO$_2$ and MOX assemblies surrounded by water reflector region with fixed cross sections (7 group)

Very tough problem – gold standard for testing transport solvers
CASMO5 MxN Model with Refined FSR

- Refined FSR
 - 5 rings inside a fuel pin
 - 10 rings in coolant region
 - $1/16^{th}$ division in azimuthal
 - 0.1 cm x 0.1 cm in reflector
 - Number of FSR: 416,168
CASMO5 Discretization

Fine Mesh

Coarse Mesh
Solutions to the C5G7 Benchmark

<table>
<thead>
<tr>
<th>Code</th>
<th>Method</th>
<th>k-eff</th>
<th>Pin Power max</th>
<th>Pin Power min</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCNP (ref)</td>
<td>MC</td>
<td>1.18655</td>
<td>2.498</td>
<td>0.232</td>
</tr>
<tr>
<td>CASMO (fine mesh)</td>
<td>MOC</td>
<td>1.18660</td>
<td>2.497</td>
<td>0.233</td>
</tr>
<tr>
<td>CASMO (default)</td>
<td>MOC</td>
<td>1.18632</td>
<td>2.488</td>
<td>0.237</td>
</tr>
<tr>
<td>CRX</td>
<td>MOC</td>
<td>1.18813</td>
<td>2.498</td>
<td>0.233</td>
</tr>
<tr>
<td>APOLLO2</td>
<td>MOC</td>
<td>1.18634</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANCER02</td>
<td>MOC</td>
<td>1.18660</td>
<td>2.498</td>
<td>0.23</td>
</tr>
<tr>
<td>HELIOS</td>
<td>CCCP</td>
<td>1.19330</td>
<td>2.545</td>
<td></td>
</tr>
<tr>
<td>CRONOS</td>
<td>S8</td>
<td>1.18338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTLILA</td>
<td>S16</td>
<td>1.18658</td>
<td>2.494</td>
<td>0.231</td>
</tr>
<tr>
<td>PENTRAN</td>
<td>S16</td>
<td>1.18760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTISN</td>
<td>S40</td>
<td>1.18632</td>
<td>2.503</td>
<td>0.232</td>
</tr>
<tr>
<td>VARIANT</td>
<td>P5</td>
<td>1.19181</td>
<td>2.535</td>
<td></td>
</tr>
</tbody>
</table>

May 2-3, 2012
International Users Group Meeting
CASMO5 Pin Fission Rate Distribution (fine mesh)

- Maximum error is 0.7 % at the corner pin. RMS error 0.2%
- Higher error in the interfaces with water reflectors.
- Fine FSR in water reflectors is important for accurate pin powers in the periphery.
New C5 Results for C5G7 Benchmark

<table>
<thead>
<tr>
<th>Source</th>
<th>Mesh</th>
<th>K-eff Error (pcm)</th>
<th>Max. Power Error (%)</th>
<th>Min. Power Error (%)</th>
<th>Memory (Rel.)</th>
<th>Run time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS</td>
<td>Coarse</td>
<td>56.6</td>
<td>-0.769</td>
<td>3.879</td>
<td>1</td>
<td>82.2</td>
</tr>
<tr>
<td>LS</td>
<td>Coarse</td>
<td>-2.9</td>
<td>0.024</td>
<td>0.298</td>
<td>1.01</td>
<td>121.5</td>
</tr>
<tr>
<td>FS</td>
<td>Fine</td>
<td>10.2</td>
<td>-0.036</td>
<td>0.598</td>
<td>11.44</td>
<td>487.8</td>
</tr>
</tbody>
</table>

- Results compared to MCNP reference solution
- Performed calculation with **FS** on **fine** and **coarse** grid and **LS** on **coarse** grid
- All cases converged in 8 transport sweeps
C5G7 Pin Power Percent Error - Hybrid

FS-All

LS-Reflector

LS-Fuel

LS-All

May 2-3, 2012 International Users Group Meeting

Studsvik
CASMO5 Fictitious MxN BWR Model

Flat Source k-eff: 0.83931

Linear Source k-eff: 0.84163

232 pcm delta
CASMO5 Fictitious MxN PWR Model

Flat Source k-eff: 1.02672

Linear Source k-eff: 1.02708

36 pcm delta
PWR Radial Reflector with Baffle
Flat Source
Regions: 15392
CPU Sec: 223
K-eff 1.13730

Linear Source
Regions: 9856
CPU Sec: 405
K-eff 1.13791
Delta = 61 pcm
<table>
<thead>
<tr>
<th>Source Model</th>
<th># Regions Modeled</th>
<th>K-eff</th>
<th>CPU (sec)</th>
<th># Transport Sweeps</th>
<th>Delta pcm from linear src. sol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>15392</td>
<td>1.13730</td>
<td>223</td>
<td>10</td>
<td>-61</td>
</tr>
<tr>
<td>Flat</td>
<td>39078</td>
<td>1.13779</td>
<td>1752</td>
<td>16</td>
<td>-12</td>
</tr>
<tr>
<td>Flat</td>
<td>64068</td>
<td>1.13786</td>
<td>6712</td>
<td>27</td>
<td>-5</td>
</tr>
<tr>
<td>Linear</td>
<td>15392</td>
<td>1.13797</td>
<td>392</td>
<td>11</td>
<td>---</td>
</tr>
</tbody>
</table>
Cores 1-12: uniform 2.5 wt% (15x15)
Cores 13-17: Split 3.3 wt% and 2.5 wt% (15x15)
Cores 18-20: Split 3.3 wt% and 2.5 wt% (16x16) C-E Style
Various B4C, AlC, and Gd configurations
B&W 1810 Criticals
(with Linear Source MoC)

Table

<table>
<thead>
<tr>
<th></th>
<th>E7R1 (Flat Src)</th>
<th>J-4.0 (Flat Src)</th>
<th>E7R1 (Lin. Src.)</th>
<th>J-4.0 (Lin. Src.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ave.</td>
<td>1.00102</td>
<td>1.00079</td>
<td>1.00067</td>
<td>0.99956</td>
</tr>
<tr>
<td>Max-Min</td>
<td>256 pcm</td>
<td>166 pcm</td>
<td>137 pcm</td>
<td>94 pcm</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.00076</td>
<td>0.00049</td>
<td>0.00046</td>
<td>0.00025</td>
</tr>
</tbody>
</table>

May 2-3, 2012
International Users Group Meeting
Summary

• A Linear Source (LS) model has been implemented in CASMO5 which improves accuracy and efficiency relative to standard Flat Source MoC

 – Factor of 4 faster than FS for equal accuracy, but about 1.5 slower for standard single assembly calculations

 – Reduction in storage by a factor of ~10 for fine mesh problems

• The new E7R1 and the JENDL-4.0 data libraries work very well on the B&W criticals and in combination with the linear source model, show good improvements relative to the standard flat source model
CASMO5 Development Summary:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Data Libraries</td>
<td>E7R1/JENDL-4.0 ✓</td>
</tr>
<tr>
<td>New 2D Transport Solution</td>
<td>Linear Source Solver ✓</td>
</tr>
<tr>
<td>Updated Absorber Chains</td>
<td>Er, Gd, Hf, AIC, W ✓</td>
</tr>
<tr>
<td>New Depletion Solver</td>
<td>RKF (2nd qrt. 2012)</td>
</tr>
</tbody>
</table>
SSP takes code development seriously!

CASMO5 is not just a collection of methods—it has built into it decades of Studsvik experience in nuclear engineering applications to make a production level lattice physics code.

Validation and verification is underway!